1、斜率用来量度斜坡的斜度。数学上,直线的斜率在任一处皆相等,是直线倾斜程度的量度。斜率亦称“角系数”,表示平面直角坐标系中表示一条直线对横坐标轴的倾斜程度的量。
1、斜率用来量度斜坡的斜度。数学上,直线的斜率在任一处皆相等,是直线倾斜程度的量度。斜率亦称“角系数”,表示平面直角坐标系中表示一条直线对横坐标轴的倾斜程度的量。
2、“斜率”是一个数学名词,可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。直线对X轴的倾斜角α的正切值tgα称为该直线的“斜率”,记作k,k=tanα。
3、斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
1、斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
2、斜率又称角系数,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
3、“斜率”是一个数学名词,可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。直线对X轴的倾斜角α的正切值tgα称为该直线的“斜率”,记作k,k=tanα。
4、斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。
5、一般式 对于直线一般式Ax+By+C=0,斜率公式为:k=-a/ b。斜截式 当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。点斜式 当直线L的斜率存在时,点斜式y2-y1=k(x2-x1)。
6、斜率,顾名思义,倾斜的比例,表示一条线相对于x轴的倾斜程度。对直线而言,当x增加Δx时,y相应增加Δy,Δy与Δx的比值即为斜率,一般用κ表示。
斜率表示一条直线或曲线的切线,关于横坐标轴倾斜程度的量。通常用直线或曲线的切线与横坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
斜率用来量度斜坡的斜度。数学上,直线的斜率在任一处皆相等,是直线倾斜程度的量度。斜率亦称“角系数”,表示平面直角坐标系中表示一条直线对横坐标轴的倾斜程度的量。
斜率又称角系数,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
“斜率”是一个数学名词,可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。直线对X轴的倾斜角α的正切值tgα称为该直线的“斜率”,记作k,k=tanα。
斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
一般式 对于直线一般式Ax+By+C=0,斜率公式为:k=-a/ b。斜截式 当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。点斜式 当直线L的斜率存在时,点斜式y2-y1=k(x2-x1)。