知道抽屉数和至少数(同类),求物体时:物体数=(至少数-1)×抽屉数+1。当至少数为2时,物体数=抽屉数+1。原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
三个公式:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原理的公式:物体数÷抽屉数=商,至少数=商;物品数÷抽屉数=商……余数,至少数=商+1;最少物体数=(至少数-1)×抽屉数+余数。
三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。抽屉原则的常见形式一,把n+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有两个物体。
k=[n/m]+1。抽屉原理可以解释为任意个自然数,其中至少有两个数的差是的倍数。如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
三个公式:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原理的公式:物体数÷抽屉数=商,至少数=商;物品数÷抽屉数=商……余数,至少数=商+1;最少物体数=(至少数-1)×抽屉数+余数。
我们把个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有个数。换句话说,个自然数分成类,至少有两个是同一类。既然是同一类,那么这两个数被除的余数就一定相同。
抽屉×(除至少数)每个抽屉放的物体数+1 至少数=商+1,能整除时至少数=商。
三个公式:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
k=[n/m]+1。抽屉原理可以解释为任意个自然数,其中至少有两个数的差是的倍数。如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
知道抽屉数和至少数(同类),求物体时:物体数=(至少数-1)×抽屉数+1。当至少数为2时,物体数=抽屉数+1。原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原则的常见形式一,把n+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有两个物体。二,把mn+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有m+1个物体。
1、三个公式:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
2、原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
3、抽屉原理的公式:物体数÷抽屉数=商,至少数=商;物品数÷抽屉数=商……余数,至少数=商+1;最少物体数=(至少数-1)×抽屉数+余数。